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Abstract

This paper investigates the nonlinear vibration of imperfect shear deformable laminated rectangular plates com-
prising a homogeneous substrate and two layers of functionally graded materials (FGMs). A theoretical formulation
based on Reddy’s higher-order shear deformation plate theory is presented in terms of deflection, mid-plane rotations,
and the stress function. A semi-analytical method, which makes use of the one-dimensional differential quadrature
method, the Galerkin technique, and an iteration process, is used to obtain the vibration frequencies for plates with
various boundary conditions. Material properties are assumed to be temperature-dependent. Special attention is given
to the effects of sine type imperfection, localized imperfection, and global imperfection on linear and nonlinear vibration
behavior. Numerical results are presented in both dimensionless tabular and graphical forms for laminated plates with
graded silicon nitride/stainless steel layers. It is shown that the vibration frequencies are very much dependent on the
vibration amplitude and the imperfection mode and its magnitude. While most of the imperfect laminated plates show
the well-known hard-spring vibration, those with free edges can display soft-spring vibration behavior at certain
imperfection levels. The influences of material composition, temperature-dependence of material properties and side-to-
thickness ratio are also discussed.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Numerous studies of the nonlinear vibration of isotropic and composite plate structures have been
conducted with various theoretical models and solution approaches (Sathyamoorthy, 1987), most of which
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are based on the assumption that the plates are perfect in shape. In practice, however, these structures can
possess globally or locally distributed, small and unavoidable initial geometric imperfections (namely,
deviations between the actual shape and the intended shape) during the fabrication process. As revealed by
experimental results (Yamaki et al., 1983), these imperfections can have pronounced and complicated ef-
fects on the linear and nonlinear dynamic responses of plates in some cases. There have been quite a few
investigations of the dynamics of imperfect, isotropic, homogeneous, thin, and moderately thick plates (see,
Celep, 1976, 1980; Hui, 1983; Hui and Leissa, 1983; Lin and Chen, 1989; Chen and Lin, 1992). However,
research into the nonlinear vibration of imperfect composite plates has been limited. Hui (1985) examined
the influence of geometric imperfections on linear and large amplitude vibration of antisymmetrically
laminated rectangular thin plates and reported that switch from a “hard-spring” character to “soft-spring”
behavior may happen when the imperfection amplitude is of the order of half the plate thickness. By using
the finite element method and polynomial functions to model the shape of imperfection modes, Kapania
and Yang (1987) obtained the nonlinear vibration frequencies for isotropic and laminated thin plates with
more general imperfections. Studies based on shear deformation plate theories include those by Chen and
Yang (1993) and Bhimaraddi (1993) for antisymmetric angle-ply and symmetric cross-ply rectangular plates
and the one by Bhimaraddi and Chandrashekhara (1993) for heated antisymmetric angle-ply rectangular
plates. The above analyses found that for thicker isotropic plates, and even for some thin composite
laminated plates, the effects of the transverse shear flexibility and rotary inertia become significant on the
nonlinear dynamic response. Furthermore, the existence of a bending—stretching coupling effect in com-
posites makes the vibration frequencies of some laminated plates very sensitive to geometric imperfections
and initial stresses. With the exception of Kapania and Yang (1987), the aforementioned authors assumed
that the imperfection mode was the same as the vibration mode, and presented results only for simple
boundary conditions.

In the past few years, the use of functionally graded materials (FGMs) has gained intensive attention in
many engineering applications, such as the aerospace, aircraft, automobile, and defense industries, and
most recently the electronics and biomedical sectors (Ichikawa, 2000). A typical FGM, with a high
bending-stretching coupling effect, is an inhomogeneous composite made from different phases of material
constituents (usually ceramic and metal), with both the composition and material properties varying
smoothly with spatial coordinates to take advantage of the desirable characteristics of each phase in order
to achieve optimal distribution of material properties. It is often used in laminated plate structures and
serves as a heat resistant layer of the metallic body. Several metallurgical techniques have been developed
for the fabrication of FGMs. However, the complexity of the manufacturing process means that initial
imperfections are inevitable.

A number of linear and nonlinear analyses of perfect, purely FGM structures have been conducted,
notably those of Praveen and Reddy (1998), Noda (1999), Reddy (2000), Shen (2002a,b,c, 2003), Shen and
Leung (2003), Vel and Batra (2002), and Yang and Shen (2002, 2003a). Several investigations of piezo-
electric FGM laminated plates have also been reported (Reddy and Cheng, 2001; He et al., 2001; Liew
et al., 2003). However, research work on imperfect FGM plates is scarce. Yang and Shen (2003b) made the
only attempt to investigate the postbuckling behavior of imperfect FGM rectangular plates under trans-
verse and in-plane loads. They used classical plate theory (CPT) and assumed that the geometric imper-
fection was the same as the buckling mode. As far as the authors are aware, no previous work has been
done on the nonlinear dynamic behavior of imperfect FGM plates.

This paper aims to investigate the linear and nonlinear vibration behavior of imperfect, shear deformable
FGM laminated rectangular plates in the framework of Reddy’s higher-order shear deformation plate
theory (Reddy, 1984). Attention is focused on the effects of different imperfection modes on the vibration
characteristics of plates with temperature-dependent material properties and under general boundary
conditions. Instead of assuming the imperfection mode to be the same as the vibration mode, a variety of
sine type, localized type, and global type imperfections are considered. A semi-analytical approach, which
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employs the differential quadrature, the Galerkin method, and the iteration procedure, is used to determine
the vibration frequencies of the plate. Extensive numerical results for laminated plates with FGM layers
made of silicon nitride and stainless steel are presented in both dimensionless tabular and graphical forms
to show that their vibration behavior is highly sensitive to initial imperfections, especially the localized
imperfection at the plate center, and that “soft-spring” vibration behavior can take place in imperfect
FGM laminated plates with free edges.

2. Theoretical formulations
2.1. The plate model

Consider an imperfect laminated rectangular plate [0 < X; <a,0 <X, < b, —h/2 < X; < h/2] that consists
of a homogeneous substrate of thickness /4. and two inhomogeneous FGM layers of the same layer
thickness Ag. Both the top surface (X; = A./2) and the bottom surface (X3 = —#k./2) of the substrate are
perfectly bonded to an FGM layer to form a symmetrically laminated plate structure, as shown in Fig. 1.
The plate is designed such that the material at the two interfacial surfaces is the same in order to eliminate
the property mismatch.

It is assumed that the FGM is made of a mixture of a ceramic phase (denoted by “c”) and a metal phase
(denoted by “m’), with the material composition varying smoothly along its thickness direction (i.e. in the
X;z-axis) only. Its local effective material properties P at a given point are then position dependent, and can
be estimated through the homogenization technique that is based on the simple rule-of-mixture (Mark-
worth and Saunders, 1995) as

Peff:Pm"_(Pc_Pm)ch (1)

where the ceramic volume fraction V; is described by

(B vz

2hf

Ve= Wathe \" (2a)
(~25) x< - np,
and the metal volume fraction is
V;n =1- Vca (2b)

FGM layer hy.

Homogeneous h
substrate

FGM layer

Fig. 1. The cross-section of a symmetrically laminated plate comprising FGM.
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Fig. 2. Variation of volume fraction ¥, in the thickness direction of the laminated plate.

where 7 is a non-negative volume fraction index and can be optimized to achieve the desired performance.
It is evident from Eq. (2) that the outer surfaces of FGM layers X; = +(0.5k. + hg) are purely ceramic,
while the inner surfaces X3 = +0.54. are fully metallic. Variation of volume fraction V¥, in the thickness
direction of a typical laminated plate is shown in Fig. 2.

This study only considers transverse initial geometric imperfection 7 in a stress-free state. The
imperfect shape can be of an arbitrary type, but the Wadee (2000) one-dimensional imperfection model for
struts is extended to describe the various possible imperfection modes, which take the form of the products
of trigonometric functions and hyperbolic functions in the X;—X, plane

W = nhsech[di(xi — )] cos[mm(xr — )] sec h[da(x2 — )] coslm(x2 — )], (3)

where x; = X /a, x, = X,/b, n is the maximum dimensionless amplitude of the initially deflected geometry,
01 and 0, are the constants defining the localization degree of the imperfection that is symmetric about
x; =Y, and x, = ,, and y; and p, are the half-wave numbers of the imperfection in X;- and X;-axis,
respectively. This expression is capable of modeling a wide range of initial imperfection modes, including:
(a) the sine type, when 6, = 6, =0, u; = u, = 1, ¥, =y, = 0.5; (b) the localized type, when o, # 0, 5, # 0;
and (c) the global type, when 6, =, =0, y; # 1 or u, # 1. A list of the imperfection modes that will
be used in Section 4 is given in Table 1 where Cases G1, G2, and G3 are global imperfection modes
while Cases L1, L2, L3, L4, and L5 are localized imperfection modes.

2.2. Governing equations
Let Uy (k =1, 2, 3) denote the dynamic displacement components in the X; direction, ¢ the time. The

displacement field of an arbitrary point within the plate domain is assumed, in accordance with Reddy’s
higher-order shear deformation plate theory, to be
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Table 1
Imperfection modes

Sine type Case G1
Ty {f
TR AN
. fyﬁt\ﬂgﬁi{ :
Skl
01 =0,u,=3,¢%,=05
0, =0, 1, =3, 4, =0.5
Case G2 Case G3
Case L1 Case L2
TR
o =15 u, =2,y, =025
6r=0, =11, =05
Case L3 Case L4

Case LS
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U2:V(X7Y,f)+X3lP2(X,Y7I)—C1X3 'Pz(X Yt)+67 (4b)
2

Uy =X, Y,0)+ W (X,Y), (4c)

where ¢; = 4/3h%, (U,V, W) are the displacements of a point on the mid-plane, and ¥, and ¥, are the slope
rotations in the X;—X; and X,—X; planes due to bending only.

As the in-plane displacements U; and U, are small compared to the transverse displacement Us; and the
higher-order terms are negligible, the nonlinear strains of an imperfect plate are defined as

= +ald) 40| =d a0,
(5)
&6 = 820) +X; [8(61) —&—Xfegq, &4 = 84 —I—X28<2> &5 = 85 +X285 ),
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Let F be the stress function that is related to the stress resultants by Ny =F x,x,, No=F yx,,
Ng¢ = —F x,x,, where a comma denotes partial differentiation with respect to the coordinates. The nonlinear
governing equations can be derived as follows:
00, 00, OR, OR, o’P PPy P, ~
—+—-3a| ==+ 2 L(w+w ., F
o Tax, 2\ T oz Va5 Tox ) LA IWLE)
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Ly s 3R —ci o+ ot | = 1® 8
ax, oy, @ rak Cl(a)(1 T I ®
oMs oM, — 0P P, =W
— 3ciRy — =LY, -1 9
ox Ty, @tiak C‘(axl o, 2~ 5an, ®)
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7 _ 62 62 o 62 6’2 ii . . . . . . .
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L=L-0L/L, L=a(s—-LL/L), L=cql/h-h),
I =15 —cl, Iy =1y — 2115 + i1y, Is =1Is —¢\1,

(k) (11)
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=

Stress resultants N;, moments M, higher-order moments P;, transverse shear forces O, and their higher-
order counterparts R; are related to strains through a partial inverse relationship

0 * * * N
85) Ay By Ej le
Moo= | =By Dy Fil|{4’ (=126 (122)
P; —E; b Hj 35.3)

o

= (0)
0, Ay Dyl )¢ ..
_l e e 4 . 12
{Ri Dij o FE ) (la.] 75) ( b)
The relations to determine the above reduced plate stiffness elements are available in open literature (see,
for example, Shen, 2002a,b,c, 2003) and therefore are omitted for brevity.
A fully movable laminated plate that is either simply supported (S) or clamped (C) at both edges X, = 0,

1, and can be supported (S), clamped (C), or free (F) at the other edges is considered. The associated
boundary conditions take the form

at X; =0, a:
Simply supported (S): W =M, =¥, =P, =N, =Ns=0, (13a)
- - — W -
Clamped (C): W =Y, :‘1/2:6—:N1:N6:0, (13b)
1
Free (F): O, =M, =M,=P, =N, = Ng = 0; (13¢)
at X, =0, b:
Simply supported (S): W =M, =¥, =P, =N, =Ns=0, (14a)
- - = W - -
Clamped (C) W:M2:T1267:N2 :NGZO, (14b)
2

where @T and M; are the generalized transverse shear force and moment at X; = 0, 1. Their definitions
are given by Reddy (1984).
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2.3. Dimensionless governing equations

With the following dimensionless quantities,
x1=Xi/a, Xy =X/b, B=a/b, (w,w) =, W*)/(DTlDZZATIA;2)1/47
F=F/(D}\Dy)",  (¥1.¥2) = (P, Pa)a/ (D}, Dy A3,) ", (15)
(LI E) = (I, 1, 1) /hd®,  T;=L+I, ©II=L-I,

the mid-plane of the plate is normalized into a square domain [0 <x; <1,0<x; < 1], and the governing
Egs. (7)-(10) can be expressed in terms of W, ¥, ¥,, and F as

o'w o'w otw oY, *Y,
Ry 3 + 27108 a2 Ox 4+ b S ot (/120 o} +’)122ﬁ26x ox3 )

o' 4 HF O*F M*F
ﬁ(?m o 262 +V133ﬁ = ) + Y14 (V14o o + /142ﬁ26 752 +) /144/34 )

.~ 62 62 oy, oY
= yuBLOW + W F) — | W +T; +/>’2 +T| =+ ]| (16)
a.X'] a)Q
ow *w *w ory 4 ory
V31 m— o + V310 =3 o + 7308 v, o 2 (“/31'1’1 = V320 ale Vil 1) /33lﬁax 6;
OF OF . aW
+V14(V220 o + B o, O 2) = <I 7, — 6 ) (17)
ow W *w oty ory oty
ﬁ</41 o + VY aa A o ox + V:mﬁz ) - “/331ﬁm+ (V41 Y2 — V430 axzz VB 2)
OF OF . oW
+ /14[3(?231 i ox +V2z3/’)2 ) (1 ¥, — I 6_x2>’ (18)
o'F o*F o*F o’y o’y o*y, o’y
o 4 + /212ﬁ o %6 5+ 24ﬁ4 o + V24 (/220 ox 31 szzﬂza o 2) + /24[3(7’231 o 26 =+ /233/32 2)
M4 orw orw .

— V4 (szxoa—x;l; + 0B s o + /244ﬁ4 ) = _§V24ﬁ2L(W +2W W), (19)
where L(,) = % % - zaxlazaxz axlazam + % aa_;’ and the coefficients y;; and y,; are defined by Yang and Shen
(2003c). b ) b

The boundary conditions (13) and (14) now become
at x; = 0, 1:
Simply supported (S): W =M, =¥, =P =N, =N, =0, (20a)
ow
Clamped (C) : W = 'Pl le ax N1 = N(, =0, (20b)
1

Free (F) : QT :Ml :Mg :Pl :Nl :N6 = O; (200)
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atx, =0, 1:
Simply supported (S): W =M, =¥, =P,=N,=Ns =0, (21a)
ow
Clamped (C): W=M, =¥, = P N, =Ng=0 (21b)
2
in which
(M17M27P17P27Mg1QT) = (MMMZJClﬁlaClFZ?Mzﬂ@Ta)az/DTI(DleZZATlAZZ)IM‘ (22)

3. Semi-analytical method

A semi-analytical approach that was proposed by Yang and Shen (2002, 2003a,c), together with an
iterative algorithm, is used to study the nonlinear vibration of the imperfect laminated plate. The approach
employs the one-dimensional differential quadrature rule and the Galerkin technique to establish a non-
linear eigenvalue system from which the nonlinear fundamental frequencies at given vibration amplitudes
are determined through an iteration process.

Bellman (1973) proposed the differential quadrature method to solve linear and nonlinear differential
equations, and it was later introduced to structural analysis by Jang et al. (1989), Bert and Malik (1996),
Bert et al. (1993, 1998) and Liew et al. (2001). Its basic idea is to approximate an unknown function and its
partial derivatives with respect to a spatial variable at any discrete point as the linear weighted sums of their
values at all the discrete points chosen in the solution domain. To start with, we discretise the plate domain
by N nodal lines parallel to x,-axis, and designate the values of W, ¥, ¥,, and F’ at an arbitrary nodal line
X1 = X{; (l: 1,,N) as

W, = W(x1;,x2), Vi = Yi(x,x2), Vo = Va1, x2), F; = F(x1;,x2). (23)

According to the differential quadrature rule, the unknown functions W, ¥, ¥,, F, and their kth partial
derivatives with respect to x; are expressed as

N
{Wa ThTZaF}:le(xl){VVjv lPU’ lPZJ'VFI'}? (24)
=
o o )
o VLY P, = > CPW, Wy, oy B, (25)
: :

j=1
where /;(x;) is the Lagrange interpolation polynomial
N
(x1 — x1)

L(xy) = : (26)

N

(er—xi) TT (o —xy)

=Lt

and the weighting coefficients ij@ can be obtained using the following recurrence formulas:

N

H (xli —x1k)
(1 _ k=1,i#k L. Lo .
Cl:/' - N (15]_1?27"'7N7 17&])7 (273)

(e —x1y) IT (eiy —x)

k=1j#k
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c% =
CW =kl kel - L) (i,j=1,2,...,N; i#J; k=2), (27b)
(17 — x1)
N
== ¢ (i=12....N; k>1). (27¢)
J=Li#j

We further expand each of the unknown nodal functions W,, ¥,;, ¥, and F; as a linear sum as
M
(VVh lplh lIIZI’; E) = Z[aim VVirm bim lPlirm Cim lPZinn dimF;‘m] exp(iO)t), (28)
m=1
where w = Qa?\/I,/Dj, is the dimensionless frequency parameter,  is the natural frequency, M is the
truncated number of series, a;y,, bin, Cim, din are the unknown coefficients, and W, ¥1im, Yaim, and F;,, are the
analytical functions that satisfy all of the boundary conditions (21a) or (21b), and take the following forms.

(1) For plates simply supported at both x, =0, 1:

W, = sin(mmx,), (29a)
Y\im = sin(mmx,), (29b)
VYoim = cos(mmx,), (29¢)
Fn = sino,xp — sinh o, — &,,(cos o,,x, — cosh a,x5); (29d)
(2) For plates clamped at both x, =0, 1:
Wy = sin o, x5 — sinh o,x5 — &,,(cos o, — cosh o,,x7), (30a)
V\im = sin(mnx,), (30Db)
Voim = sin(mmx,), (30c)
F,n = sina,x, — sinh o, x5 — &,,(cos o,,x5 — cosh a,x,); (30d)

where &,, = (sina, — sinha,,)/(cosa,, — cosha,,), o, = (2m + 1)n/2.

Applying the relationships (24), (25), and (28) to the partial differential governing Egs. (16)—(19) and the
boundary conditions (20), and then employing Galerkin’s procedure to minimize the interior residual
by taking functions (29) or (30) as the weighting functions, gives a nonlinear eigensystem that consists of
4NM algebraic equations in matrix form of

G G Gi3 Gu+Gj, 0 0 0 HiA) Ty T, Tz 0 a
G Gy Gx Gy . 0 00 0 e Ty Ty Ty 0 b
G3 G Gy Gy 0 00 0 Tsp Ty Ty 0 c
Gu+G, Guo Gy Gy Ha(A) 0 0 0 o o o o/ lda
0
0
=0 (31)
0

in which the unknown vectors
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A=1[a"b" c"d"",
R (32)

T
a= [alla"'aalM;"'aain"'7aNM] ) b= [blla"'7blM,"';biMa"'7bNM
}T

)

T
¢ = [Clla---aclM7-~~aciM7-~~aCNM] s d= [dlly---adlM7-~~adiMa---7dNM

G, (i,j=1,2,3,4) and T; (i,j = 1,2, 3) are constant matrices, G}, and G}, are the matrices including the
effect of the initial geometric imperfection, and Hi4(A) and Hy; (A) are the nonlinear matrices dependent on
the unknown vector A.

After static condensation of Eq. (31), an iteration process is used to determine the nonlinear frequency
with the following steps.

Step 1: Setting A = 0, a linear eigenvalue (fundamental frequency) and the associated eigenvector (vibra-
tion mode) are sought from Eq. (31). The eigenvector is then appropriately scaled up such that the
maximum displacement is equal to a given vibration amplitude.

Step 2: Using the new eigenvector to calculate H;4(A) and Hy (A), a new eigenvalue and eigenvector are
obtained from the updated eigensystem (31).

Step 3: The eigenvector is scaled up again and step 2 is repeated until the eigenvalue converges to a desired
accuracy.

Obviously, linear vibration frequency can be solved from Eq. (31) as a limiting case by neglecting the
nonlinear matrices.

4. Numerical results and discussion
4.1. Comparison results

Before proceeding to linear and nonlinear vibration analyses of imperfect FGM laminated plates, the
nonlinear vibration of both simply supported isotropic and symmetric cross-ply laminated square plates
with sine type initial geometric imperfection is solved as test examples to validate the present formulation
and solution method.

For the isotropic plates (v = 0.3, = 0.2, a/h = 10,20,40), present results with varying numbers of
truncated series M and of the nodal lines N are compared in Table 2 with the analytical solutions of Singh
et al. (1974) and Lin and Chen (1989). Close correlation is achieved. Some discrepancy is expected because
their analyses were based on the FSDT and the in-plane displacement modes that they assumed were
slightly different from the movable conditions that are considered in the present investigation.

Since the stiffness matrices of a symmetric cross-ply plate can be regarded as a limiting case of those of
the laminated FGM plates and do not contain stretching-bending coupling elements, we further compare in
Table 3 normalized frequencies wnp/wy of both 90°/0°/90° and 0°/90°/0°/90°/0° symmetric cross-ply
graphite/epoxy plates (a/h = 10, n = 0.1) with Bhimaraddi’s parabolic shear deformation theory based
results (Bhimaraddi, 1993) to validate the present analysis in composite laminates, where w; and wyp
denote linear and nonlinear fundamental frequency of the imperfect plate, respectively. Excellent agreement
is observed. The material constants used in this example are:

E11 = 181 GPa, E22 =10.3 GPa, GIZ = G13 =717 GPa, G23 =6.21 GPa,Vlz =0.28.

In what follows, a symbolic notation will be used to indicate the out-of-plane boundary conditions.
“SCSF”, for example, refers to a laminated plate simply supported at x, = 0, 1, clamped at x; = 0, and free
at x; = 1.
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Table 2
Comparisons of nonlinear periods for simply supported imperfect isotropic square plates
alh W./h Singh et al. Lin and Chen (N,M)
(1974) (1989) 9,3) (13,5) (17,5) (23,7)
10 0.0 10.269 10.0353 8.1746 10.092 10.298 10.307
0.1 10.24 9.98 8.1510 10.063 10.112 10.123
0.2 10.15 9.87 8.1030 10.004 10.019 10.042
0.4 9.67 9.23 7.6411 9.4001 9.4571 9.4602
0.6 8.81 8.10 6.6197 8.1712 8.3370 8.3547
0.8 7.85 6.97 5.5467 6.8478 6.9876 6.9916
1.0 6.99 5.99 4.6636 5.7575 5.8750 5.8769
20 0.0 20.044 21.2688 18.285 21.017 21.446 21.468
0.1 19.99 19.47 16.745 19.243 19.636 19.656
0.2 19.81 19.30 16.583 19.060 19.443 19.469
0.4 18.90 18.70 16.086 18.488 18.862 18.881
0.6 17.27 15.89 13.647 15.684 16.001 16.023
0.8 15.55 13.78 11.911 13.695 13.971 13.985
1.0 13.77 12.02 10.429 11.987 12.232 12.244
40 0.0 39.840 42.2041 34.419 40.159 41.404 41.526
0.1 39.74 38.73 32.309 37.700 38.866 38.983
0.2 39.39 38.38 31.959 37.282 38.435 38.551
0.4 37.59 35.94 29.931 34.925 36.006 36.114
0.6 34.37 31.63 26.363 30.762 31.717 31.809
0.8 30.75 27.44 22.970 26.803 27.632 27.715
1.0 27.45 23.97 19.987 23.317 24.038 24.106
Table 3
Comparisons of normalized frequencies for simply supported imperfect symmetric cross-ply square plates
We/h 0°/90°/0° 0°/90°/0°/90°/0°
Present Bhimaraddi (1993) Present Bhimaraddi (1993)
0.0 1.000 1.000 1.000 1.000
0.2 1.034 1.030 1.036 1.030
0.4 1.142 1.130 1.134 1.125
0.6 1.301 1.289 1.291 1.278
0.8 1.496 1.482 1.476 1.465
1.0 1.708 1.694 1.683 1.671
1.2 1.933 1.917 1.897 1.888

4.2. Linear vibration

In the following sections, it is assumed that the homogeneous substrate is made of stainless steel
(SUS304) and the FGM layers are a mixture of silicon nitride and stainless steel, with temperature-
dependent material constants

E = 34843 x (1 —3.070 x 107 x T +2.160 x 107 x T* — 8.946 x 10" x T%) GPa,
v=024, a=58723x10"°x (1+9.095x 107*xT)K™', p=2370 kg/m’

for silicon nitride and
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E=201.04x (14+3.079 x 10°* x T — 6.534 x 107 x T?) GPa,
v =03262x (1 —2.002 x 10 x T+3.797 x 107 x T?),
0=1233x 10" x (14+8.086 x 10 x T) K™, p = 8166 kg/m’

for stainless steel. The thickness ratio between the homogeneous substrate and the FGM layer is A./hr = 3
and the side-to-thickness ratio is a/k = 5 except in Table 4 and Fig. 10. The values of 7; and Dj, of an
isotropic steel plate with a/h = 10 at T = 300 K are selected to serve as the reference inertia 7, and the
reference stiffness D).

Tables 4-6 present the first 6 dimensionless linear frequencies w = (Qa?/n?)+/1ly/D, for imperfect
(n = 0.2) laminated square plates with three types of initial imperfections, together with those for perfect
(n = 0.0) plates to demonstrate the effect of imperfection. The temperature is assumed to be 7' = 300 K.

Table 4 compares the linear results of simply supported, moderately thick (a/h = 40, 10) and thick
(a/h = 5), FGM laminated (n = 0.2, 2.0, 10), and fully stainless steel plates with sine type imperfection. The
linear frequency is the maximum for laminated plates of n» = 0.2 and becomes smaller as n increases. This
can be expected because the Young’s modulus for silicon nitride is much greater than that for stainless steel,
and the volume of silicon nitride declines when # increases. The linear frequency also decreases dramatically
with increases in the side-to-thickness ratio a/h. The effect of the initial imperfections is to increase the
vibration frequency. This effect, however, tends to be very weak as a/h increases to 40, which indicates that
the geometric imperfection has much stronger influence on the vibration behavior of thicker plates.

Table 5 examines the effect of the location of local type imperfection on the linear frequencies of FGM
laminated plates with different boundary supporting conditions (CCCC, SCSC, SSSS, CFCF, and SFSF).
Given the same parameters, the plate with an imperfection locally centered at x; = 0.5 (Case L2) has higher
frequencies than the one whose imperfection is deviated from the plate center and located at x; = 0.25 (Case
L1). The fully clamped laminated plate has the highest linear frequencies among the plates considered.

Table 4
Linear frequency parameters for simply supported laminated square plates with sine type imperfection
a/h Mode No. Perfect Imperfect
n=02 n=2.0 n=10 SUS304 n=02 n=20 n=10 SUS304
5 1 6.4388 5.6094 5.1983 4.9959 6.4636 5.6313 5.2192 5.0165
2 13.902 12.183 11.338 10.922 13.917 12.196 11.350 10.934
3 13.902 12.183 11.338 10.922 13.917 12.196 11.350 10.934
4 19.937 17.546 16.374 15.796 19.948 17.555 16.383 15.805
5 23.460 20.692 19.338 18.669 23.470 20.700 19.345 18.675
6 23.460 20.692 19.338 18.669 23.470 20.700 19.345 18.675
10 1 2.5120 2.1792 2.0131 1.9310 2.5201 2.1865 2.0200 1.9379
2 5.9606 5.1826 4.7958 4.6052 5.9649 5.1865 4.7995 4.6088
3 5.9606 5.1827 4.7958 4.6052 5.9649 5.1865 4.7995 4.6088
4 9.1059 7.9328 7.3515 7.0652 9.1087 7.9353 7.3539 7.0676
5 11.066 9.6515 8.9519 8.6076 11.068 9.6535 8.9538 8.6094
6 11.066 9.6515 8.9519 8.6076 11.068 9.6535 8.9538 8.6094
40 1 0.3256 0.2821 0.2602 0.2494 0.3266 0.2830 0.2611 0.2502
2 0.8110 0.7026 0.6482 0.6214 0.8116 0.7031 0.6487 0.6219
3 0.8110 0.7026 0.6482 0.6214 0.8116 0.7031 0.6487 0.6219
4 1.2927 1.1201 1.0337 0.9909 1.2931 1.1204 1.0339 0.9912
5 1.6120 1.3969 1.2892 1.2359 1.6122 1.3971 1.2894 1.2361
6 1.6120 1.3969 1.2892 1.2359 1.6122 1.3971 1.2894 1.2361
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Table 5
Linear frequency parameters for laminated square plates with localized imperfection

Plate Mode Perfect Case L1 Case L2

type No. n=02 n=20 a=10 n=02 n=20 n=10 =02 =20 =10

Cccc 1 9.7131 8.5588 7.9958 9.7564 8.5971 8.0320 10.092 8.8980 8.3190
2 16.866 14.930 13.996 16.974 15.025 14.085 16.875 14.938 14.003
3 17.134 15.153 14.196 17.252 15.257 14.293 17.687 15.644 14.660
4 22.916 20.307 19.047 23.200 20.555 19.280 22.961 20.346 19.083
5 25.955 23.042 21.639 26.034 23.116 21.711 26.233 23.271 21.844
6 26.759 23.683 22.172 26.940 23.834 22.306 27.591 24.410 22.854

SCSC 1 8.1526 7.1646 6.6825 8.1828 7.1911 6.7074 8.4531 7.4331 6.9382
2 14.505 12.744 11.882 14.603 12.829 11.962 14.968 13.154 12.270
3 16.171 14.302 13.401 16.246 14.368 13.462 16.176 14.306 13.405
4 21.209 18.743 17.546 21.425 18.931 17.723 21.239 18.769 17.571
5 23.708 20.925 19.565 23.881 21.076 19.706 24.362 21.502 20.109
6 25.586 22.713 21.331 25.629 22.751 21.367 25916 22.993 21.593

SSSS 1 6.4388 5.6094 5.1983 6.4914 5.6560 5.2428 6.7815 5.9143 5.4889
2 13.902 12.183 11.338 13.984 12.255 11.406 13.907 12.188 11.342
3 13.902 12.183 11.338 14.020 12.287 11.436 14.362 12.588 11.721
4 19.937 17.546 16.374 20.158 17.739 16.556 19.965 17.570 16.397
5 23.460 20.692 19.338 23.502 20.729 19.372 23.578 20.794 19.433
6 23.460 20.692 19.338 23.663 20.869 19.503 24.253 21.384 19.986

CFCF 1 6.4849 5.6942 5.3055 6.5514 5.7531 5.3613 6.6632 5.8509 5.4531
2 7.4929 6.5464 6.0836 7.5672 6.6122 6.1461 7.4978 6.5507 6.0877
3 11.8946 10.349 9.5899 11.901 10.355 9.5958 12.216 10.632 9.8569
4 14.8668 13.129 12.287 14.988 13.234 12.386 15.087 13.319 12.464
5 16.2188 14.273 13.329 16.369 14.402 13.450 16.233 14.285 13.341
6 20.132 17.550 16.281 20.198 17.608 16.335 20.139 17.555 16.287

SFSF 1 3.3602 2.9055 2.6787 3.4372 2.9741 2.7441 3.5759 3.0962 2.8596
2 5.3156 4.5702 4.2029 5.3789 4.6265 4.2567 5.3184 4.5727 4.2053
3 10.957 9.4870 8.7603 10.961 9.4907 8.7639 11.209 9.7085 8.9703
4 11.499 10.032 9.3075 11.610 10.129 9.3977 11.696 10.202 9.4652
5 13.308 11.580 10.728 13.431 11.686 10.827 13.319 11.588 10.736
6 18.355 16.011 14.854 18.372 16.026 14.869 18.782 16.384 15.205

Table 6 investigates the effect of the global imperfection mode on the linear vibration of SSSS and CCCC
FGM laminated plates. The half-wave number is taken to be the same along x;- and x,-axes, and is 3, 5, and
7 for Cases G1, G2, and G3, respectively. The linear frequency increases as the half-wave number increases.
This effect is much more pronounced for SSSS laminated plates where a maximum of 31.2-32.5% gain in
fundamental frequencies can be obtained with Case G3 imperfections.

The sensitivity of linear fundamental frequency to geometric imperfection is studied in Fig. 3 by com-
paring the sensitivity indicator S,, of simply supported, FGM laminated square plates with sine type, Case
G1, or Case L2 imperfections. Here, S, is calculated by

Sw _ (wimperfect - COperfect) « 1000/07 (33)

perfect

where perfect aNd Oimperreee denote the dimensionless fundamental frequencies for perfect plates and
imperfect plates, respectively. Among the imperfection modes under consideration, the linear frequency is
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Table 6
Linear frequency parameters for laminated square plates with global imperfection
Imperfection ~ Mode No. SSSS Cccce
n=02 n=20 n=10 n=20.2 n=20 n=10
Perfect 1 6.4388 5.6094 5.1983 9.7131 8.5588 7.9958
2 13.902 12.183 11.338 16.866 14.930 13.996
3 13.902 12.183 11.338 17.134 15.153 14.196
4 19.937 17.546 16.374 22916 20.307 19.047
5 23.460 20.692 19.338 25.955 23.042 21.639
6 23.460 20.692 19.338 26.759 23.683 22.172
Case Gl 1 6.5166 5.6785 5.2641 9.7606 8.6024 8.0381
2 14.034 12.299 11.448 16.939 14.993 14.055
3 14.067 12.328 11.475 17.202 15.212 14.250
4 20.157 17.738 16.554 23.010 20.387 19.122
5 23.987 21.150 19.766 26.605 23.604 22.162
6 23.987 21.150 19.766 27.506 24.331 22.776
Case G2 1 6.5871 5.7414 5.3241 9.8215 8.6561 8.0887
2 13.947 12.222 11.375 16.919 14.976 14.039
3 13.983 12.255 11.406 17.339 15.334 14.367
4 19.936 17.545 16.373 22.963 20.346 19.083
5 23.654 20.861 19.496 26913 23.818 22.296
6 24.519 21.614 20.201 27.184 24.088 22.605
Case G3 1 8.4370 7.3813 6.8790 11.143 9.8274 9.2005
2 14.760 12.939 12.052 17.998 15.939 14.957
3 15.437 13.535 12.614 19.233 17.003 15.943
4 20.796 18.300 17.083 24.548 21.752 20.416
5 24.548 21.635 20.214 27.414 24317 22.837
6 25.262 22.265 20.812 29.328 25.920 24.261

most sensitive to localized imperfection, but is comparatively less sensitive to sine type imperfection. The
results also confirm that the linear frequency increases steadily as the imperfection amplitude increases.

4.3. Nonlinear vibration

In this section, only nonlinear results for the fundamental vibration mode are presented, even though the
analysis is also applicable to the non-fundamental modes. Unless otherwise specified, numerical results in
the form of normalized frequency wni/wy, given in Table 7 and Figs. 4-10 are for simply supported, FGM
laminated square plates (n = 0.2, 10) at 7 = 300 K, where wyi is the nonlinear fundamental frequency of
an imperfect plate and wy is the linear fundamental frequency of its perfect counterpart, which is deter-
mined from the linear form of Eq. (31) by neglecting imperfection matrices Gj,, Gj;, and the nonlinear
matrices Hi4(A) and Hy (A).

The normalized frequencies of CCCC, SCSC, and SSSS imperfect laminated plates (n = 0.2) at various
vibration amplitudes (W./h = 0.0, 0.2, 0.4, 0.6, 0.8, 1.0) and with three types of initial imperfections (sine
type, Case L2, and Case G1) are tabulated in Table 7. Note that the results at W./h = 0.0 are virtually the
frequency ratios between the linear fundamental frequency and w,. The normalized frequency rises with the
increase of vibration amplitude, thus displaying the typical characteristic of the well-known ‘““hard-spring”
vibration behavior. The plate with Case L2 imperfection has the highest values of normalized frequency
N1/, but unlike the linear case discussed in Fig. 3, the values of wni/wp for the plate with sine type
imperfections are greater than those with Case G1 imperfections.



2250

S. Kitipornchai et al. | International Journal of Solids and Structures 41 (2004) 2235-2257

40

30

10

ssss; ab=10; ah=5
h/h.=3; T=300K

a Sinetype
b: Case G1
c: CaselL2

Fig. 3. Geometric imperfection sensitivity of linear fundamental frequency for simply supported laminated square plates.

Table 7
Normalized frequencies of laminated square plates with initial imperfection

Imperfec- W./h CCcC SSSS SCSC

tion type n=02 n=2 n=10 n=02 an=2 n=10 n=02 =2 n=10

Sine type 0.0 1.0029 1.0029 1.0030 1.0039 1.0040 1.0040 1.0030 1.0030 1.0031
0.2 1.0224 1.0226 1.0231 1.0251 1.0256 1.0263 1.0216 1.0218 1.0222
0.4 1.0577 1.0581 1.0593 1.0631 1.0644 1.0662 1.0551 1.0557 1.0569
0.6 1.1048 1.1057 1.1076 1.1153 1.1175 1.1206 1.1003 1.1014 1.1036
0.8 1.1607 1.1621 1.1650 1.1784 1.1818 1.1866 1.1539 1.1557 1.1592
1.0 1.2238 1.2257 1.2296 1.2495 1.2542 1.2607 1.2140 1.2167 1.2213

Case L2 0.0 1.0956 1.0959 1.0977 1.1060 1.1084 1.1114 1.0940 1.0944 1.0962
0.2 1.1430 1.1439 1.1464 1.1584 1.1618 1.1661 1.1411 1.1421 1.1450
0.4 1.1953 1.1967 1.2001 1.2193 1.2238 1.2295 1.1928 1.1946 1.1986
0.6 1.2531 1.2551 1.2592 1.2877 1.2933 1.3005 1.2488 1.2514 1.2564
0.8 1.3177 1.3201 1.3251 1.3625 1.3691 1.3779 1.3097 1.3130 1.3191
1.0 1.3906 1.3931 1.3989 1.4426 1.4503 1.4605 1.3760 1.3799 1.3870

Case G1 0.0 1.0089 1.0090 1.0093 1.0103 1.0105 1.0108 1.0117 1.0117 1.0119
0.2 1.0218 1.0222 1.0230 1.0179 1.0183 1.0188 1.0221 1.0221 1.0226
0.4 1.0462 1.0472 1.0487 1.0422 1.0431 1.0443 1.0437 1.0441 1.0451
0.6 1.0809 1.0826 1.0848 1.0816 1.0833 1.0856 1.0750 1.0762 1.0780
0.8 1.1257 1.1278 1.1309 1.1339 1.1366 1.1403 1.1155 1.1176 1.1205
1.0 1.1812 1.1836 1.1875 1.1972 1.2011 1.2065 1.1653 1.1681 1.1723
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Fig. 4. Normalized frequencies versus vibration amplitude curves for simply supported laminated square plates with global imper-
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Fig. 5. Normalized frequencies versus vibration amplitude curves for simply supported laminated square plates with localized

imperfection.
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Fig. 6. Normalized frequencies versus vibration amplitude curves for simply supported laminated square plates at different temper-
atures.
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Fig. 7. Effect of imperfection location on the nonlinear vibration behavior of simply supported laminated square plates.
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Fig. 8. Normalized frequencies versus vibration amplitude curves for SFSF and CFCF laminated square plates with localized

imperfections (Case L2).
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Fig. 9. Normalized frequencies versus vibration amplitude curves for simply supported laminated square plates with different material

compositions.
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Fig. 10. Effect of side-to-thickness ratio on the nonlinear vibration behavior of simply supported laminated square plates with different
initial imperfections.

Figs. 4 and 5 show the normalized frequency versus vibration amplitude curves for perfect and imperfect
FGM laminated plates with global and localized imperfections. Curves a, which are for perfect plates, are
exactly symmetric with W./h = 0.0. For an imperfect plate, however, the minima, rising as the half-wave
number increases, deviate from W, /h = 0.0, and the symmetry of the curves does not exist. Such a tendency
is much more obvious in Fig. 5 for plates with localized imperfections.

Fig. 6 compare the normalized frequency versus vibration amplitude curves for FGM laminated plates at
different temperatures (7 = 300, 600 K). The curves become lower as temperature rises.

We next investigate the effect of imperfection location on the nonlinear vibration of FGM laminated
plate. To this end, normalized frequency versus vibration amplitude curves with the center of Case L1 type
imperfection located at x; = 0.25, 0.40, 0.50 are given in Fig. 7. As can be observed, the minima of the
curves increase slightly and move further to the left-hand side as the imperfection location gets closer to the
plate center.

Fig. 8 depicts the nonlinear vibration behavior of FGM laminated plates with free edges. The
numerical results show that both CFCF and SFSF imperfect plates change to “‘soft-spring” vibration
behavior from their inherent “hard-spring” behavior as the magnitude of central localized imperfection
reaches a certain level ( = 0.095 for SFSF plates and # > 0.055 for CFCF plates). A similar phenomenon
is found in all of the other examples involving free edges. This suggests that the vibration behavior of
laminated plates containing free edges is very much dependent on the existence and amplitude of initial
imperfection.

Fig. 9 gives the normalized frequency versus vibration amplitude curves for plates with sine type
imperfection and having different material composition. Curves a, b, and ¢ are for a fully FGM plate, a
symmetrically laminated FGM/FGM plate, and an FGM/AI/FGM plate, respectively. The material profile
of the first two plates can be characterized by ceramic volume fraction defined as
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FGM/FGM : V.= (2X:/h)", X3 >0, V.= (-2X:/h)", X3<O0; (34a)
Fully FGM : ¥, = (0.5+X;/h)". (34b)

The fully FGM plate has the highest wyi/w, at negative vibration amplitudes, but has the lowest wyy/w
at positive vibration amplitudes. In contrast, the normalized frequency of an FGM/AI/FGM laminated
plate is the minimum when W./h < 0.0, but becomes the maximum when W./h > 0.0.

Fig. 10 examines the variation of wni/wy with side-to-thickness ratio a/h for simply supported lami-
nated plates. For all plates, perfect and imperfect, wni /@, decreases with the increase of a/h, and tends
to be a constant when a/h = 20.

5. Conclusions

The nonlinear vibration problems of imperfect, shear deformable, and FGM laminated rectangular
plates are investigated in this paper by using Reddy’s higher-order shear deformation plate theory and a
semi-analytical approach. The influence of geometric imperfections, especially the localized type, is found
to be highly significant on the vibration behavior of such laminated plate structures. The presence of
localized imperfection at the plate center may significantly increase the linear frequencies and nonlinear
normalized frequencies. Laminated plates with free edges may change their inherent “hard-spring” non-
linear vibration behavior to a “soft-spring” character when the imperfection magnitude reaches a certain
level. The results also show that the vibration frequencies of thicker plates are much more sensitive to
geometric imperfections than those of thinner plates.
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