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Abstract

This paper investigates the nonlinear vibration of imperfect shear deformable laminated rectangular plates com-

prising a homogeneous substrate and two layers of functionally graded materials (FGMs). A theoretical formulation

based on Reddy�s higher-order shear deformation plate theory is presented in terms of deflection, mid-plane rotations,

and the stress function. A semi-analytical method, which makes use of the one-dimensional differential quadrature

method, the Galerkin technique, and an iteration process, is used to obtain the vibration frequencies for plates with

various boundary conditions. Material properties are assumed to be temperature-dependent. Special attention is given

to the effects of sine type imperfection, localized imperfection, and global imperfection on linear and nonlinear vibration

behavior. Numerical results are presented in both dimensionless tabular and graphical forms for laminated plates with

graded silicon nitride/stainless steel layers. It is shown that the vibration frequencies are very much dependent on the

vibration amplitude and the imperfection mode and its magnitude. While most of the imperfect laminated plates show

the well-known hard-spring vibration, those with free edges can display soft-spring vibration behavior at certain

imperfection levels. The influences of material composition, temperature-dependence of material properties and side-to-

thickness ratio are also discussed.

� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Numerous studies of the nonlinear vibration of isotropic and composite plate structures have been

conducted with various theoretical models and solution approaches (Sathyamoorthy, 1987), most of which
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are based on the assumption that the plates are perfect in shape. In practice, however, these structures can

possess globally or locally distributed, small and unavoidable initial geometric imperfections (namely,

deviations between the actual shape and the intended shape) during the fabrication process. As revealed by

experimental results (Yamaki et al., 1983), these imperfections can have pronounced and complicated ef-
fects on the linear and nonlinear dynamic responses of plates in some cases. There have been quite a few

investigations of the dynamics of imperfect, isotropic, homogeneous, thin, and moderately thick plates (see,

Celep, 1976, 1980; Hui, 1983; Hui and Leissa, 1983; Lin and Chen, 1989; Chen and Lin, 1992). However,

research into the nonlinear vibration of imperfect composite plates has been limited. Hui (1985) examined

the influence of geometric imperfections on linear and large amplitude vibration of antisymmetrically

laminated rectangular thin plates and reported that switch from a ‘‘hard-spring’’ character to ‘‘soft-spring’’

behavior may happen when the imperfection amplitude is of the order of half the plate thickness. By using

the finite element method and polynomial functions to model the shape of imperfection modes, Kapania
and Yang (1987) obtained the nonlinear vibration frequencies for isotropic and laminated thin plates with

more general imperfections. Studies based on shear deformation plate theories include those by Chen and

Yang (1993) and Bhimaraddi (1993) for antisymmetric angle-ply and symmetric cross-ply rectangular plates

and the one by Bhimaraddi and Chandrashekhara (1993) for heated antisymmetric angle-ply rectangular

plates. The above analyses found that for thicker isotropic plates, and even for some thin composite

laminated plates, the effects of the transverse shear flexibility and rotary inertia become significant on the

nonlinear dynamic response. Furthermore, the existence of a bending–stretching coupling effect in com-

posites makes the vibration frequencies of some laminated plates very sensitive to geometric imperfections
and initial stresses. With the exception of Kapania and Yang (1987), the aforementioned authors assumed

that the imperfection mode was the same as the vibration mode, and presented results only for simple

boundary conditions.

In the past few years, the use of functionally graded materials (FGMs) has gained intensive attention in

many engineering applications, such as the aerospace, aircraft, automobile, and defense industries, and

most recently the electronics and biomedical sectors (Ichikawa, 2000). A typical FGM, with a high

bending–stretching coupling effect, is an inhomogeneous composite made from different phases of material

constituents (usually ceramic and metal), with both the composition and material properties varying
smoothly with spatial coordinates to take advantage of the desirable characteristics of each phase in order

to achieve optimal distribution of material properties. It is often used in laminated plate structures and

serves as a heat resistant layer of the metallic body. Several metallurgical techniques have been developed

for the fabrication of FGMs. However, the complexity of the manufacturing process means that initial

imperfections are inevitable.

A number of linear and nonlinear analyses of perfect, purely FGM structures have been conducted,

notably those of Praveen and Reddy (1998), Noda (1999), Reddy (2000), Shen (2002a,b,c, 2003), Shen and

Leung (2003), Vel and Batra (2002), and Yang and Shen (2002, 2003a). Several investigations of piezo-
electric FGM laminated plates have also been reported (Reddy and Cheng, 2001; He et al., 2001; Liew

et al., 2003). However, research work on imperfect FGM plates is scarce. Yang and Shen (2003b) made the

only attempt to investigate the postbuckling behavior of imperfect FGM rectangular plates under trans-

verse and in-plane loads. They used classical plate theory (CPT) and assumed that the geometric imper-

fection was the same as the buckling mode. As far as the authors are aware, no previous work has been

done on the nonlinear dynamic behavior of imperfect FGM plates.

This paper aims to investigate the linear and nonlinear vibration behavior of imperfect, shear deformable

FGM laminated rectangular plates in the framework of Reddy�s higher-order shear deformation plate
theory (Reddy, 1984). Attention is focused on the effects of different imperfection modes on the vibration

characteristics of plates with temperature-dependent material properties and under general boundary

conditions. Instead of assuming the imperfection mode to be the same as the vibration mode, a variety of

sine type, localized type, and global type imperfections are considered. A semi-analytical approach, which



S. Kitipornchai et al. / International Journal of Solids and Structures 41 (2004) 2235–2257 2237
employs the differential quadrature, the Galerkin method, and the iteration procedure, is used to determine

the vibration frequencies of the plate. Extensive numerical results for laminated plates with FGM layers

made of silicon nitride and stainless steel are presented in both dimensionless tabular and graphical forms

to show that their vibration behavior is highly sensitive to initial imperfections, especially the localized
imperfection at the plate center, and that ‘‘soft-spring’’ vibration behavior can take place in imperfect

FGM laminated plates with free edges.
2. Theoretical formulations

2.1. The plate model

Consider an imperfect laminated rectangular plate ½06X1 6 a; 06X2 6 b;�h=26X3 6 h=2� that consists
of a homogeneous substrate of thickness hc and two inhomogeneous FGM layers of the same layer

thickness hF. Both the top surface (X3 ¼ hc=2) and the bottom surface (X3 ¼ �hc=2) of the substrate are

perfectly bonded to an FGM layer to form a symmetrically laminated plate structure, as shown in Fig. 1.

The plate is designed such that the material at the two interfacial surfaces is the same in order to eliminate

the property mismatch.

It is assumed that the FGM is made of a mixture of a ceramic phase (denoted by ‘‘c’’) and a metal phase

(denoted by ‘‘m’’), with the material composition varying smoothly along its thickness direction (i.e. in the
X3-axis) only. Its local effective material properties Peff at a given point are then position dependent, and can

be estimated through the homogenization technique that is based on the simple rule-of-mixture (Mark-

worth and Saunders, 1995) as
Peff ¼ Pm þ ðPc � PmÞVc; ð1Þ

where the ceramic volume fraction Vc is described by
Vc ¼
2X3�hc
2hF

� �n
X3 P hc=2;

� 2X3þhc
2hF

� �n
X3 6 � hc=2;

8<: ð2aÞ
and the metal volume fraction is
Vm ¼ 1� Vc; ð2bÞ
Fig. 1. The cross-section of a symmetrically laminated plate comprising FGM.
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Fig. 2. Variation of volume fraction Vm in the thickness direction of the laminated plate.
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where n is a non-negative volume fraction index and can be optimized to achieve the desired performance.
It is evident from Eq. (2) that the outer surfaces of FGM layers X3 ¼ �ð0:5hc þ hFÞ are purely ceramic,

while the inner surfaces X3 ¼ �0:5hc are fully metallic. Variation of volume fraction Vm in the thickness

direction of a typical laminated plate is shown in Fig. 2.

This study only considers transverse initial geometric imperfection W
�
in a stress-free state. The

imperfect shape can be of an arbitrary type, but the Wadee (2000) one-dimensional imperfection model for

struts is extended to describe the various possible imperfection modes, which take the form of the products

of trigonometric functions and hyperbolic functions in the X1–X2 plane
W
� ¼ gh sec h½d1ðx1 � w1Þ� cos½l1pðx1 � w1Þ� sec h½d2ðx2 � w2Þ� cos½l2pðx2 � w2Þ�; ð3Þ
where x1 ¼ X1=a, x2 ¼ X2=b, g is the maximum dimensionless amplitude of the initially deflected geometry,

d1 and d2 are the constants defining the localization degree of the imperfection that is symmetric about

x1 ¼ w1 and x2 ¼ w2, and l1 and l2 are the half-wave numbers of the imperfection in X1- and X2-axis,
respectively. This expression is capable of modeling a wide range of initial imperfection modes, including:

(a) the sine type, when d1 ¼ d2 ¼ 0, l1 ¼ l2 ¼ 1, w1 ¼ w2 ¼ 0:5; (b) the localized type, when d1 6¼ 0, d2 6¼ 0;

and (c) the global type, when d1 ¼ d2 ¼ 0, l1 6¼ 1 or l2 6¼ 1. A list of the imperfection modes that will

be used in Section 4 is given in Table 1 where Cases G1, G2, and G3 are global imperfection modes

while Cases L1, L2, L3, L4, and L5 are localized imperfection modes.

2.2. Governing equations

Let Uk (k ¼ 1, 2, 3) denote the dynamic displacement components in the Xk direction, t the time. The

displacement field of an arbitrary point within the plate domain is assumed, in accordance with Reddy�s
higher-order shear deformation plate theory, to be



Table 1

Imperfection modes

Sine type Case G1

d1 ¼ 0, l1 ¼ 1, w1 ¼ 0:5 d1 ¼ 0, l1 ¼ 3, w1 ¼ 0:5

d2 ¼ 0, l2 ¼ 1, w2 ¼ 0:5 d2 ¼ 0, l2 ¼ 3, w2 ¼ 0:5

Case G2 Case G3

d1 ¼ 0, l1 ¼ 5, w1 ¼ 0:5 d1 ¼ 0, l1 ¼ 7, w1 ¼ 0:5

d2 ¼ 0, l2 ¼ 5, w2 ¼ 0:5 d2 ¼ 0, l2 ¼ 7, w2 ¼ 0:5

Case L1 Case L2

d1 ¼ 15, l1 ¼ 2, w1 ¼ 0:25 d1 ¼ 15, l1 ¼ 2, w1 ¼ 0:5

d2 ¼ 0, l2 ¼ 1, w2 ¼ 0:5 d2 ¼ 0, l2 ¼ 1, w2 ¼ 0:5

Case L3 Case L4

d1 ¼ 15, l1 ¼ 2, w1 ¼ 0:5 d1 ¼ 15, l1 ¼ 2, w1 ¼ 0:5

d2 ¼ 0, l2 ¼ 3, w2 ¼ 0:5 d2 ¼ 0, l2 ¼ 5, w2 ¼ 0:5

Case L5

d1 ¼ 15, l1 ¼ 2, w1 ¼ 0:5

d2 ¼ 0, l2 ¼ 7, w2 ¼ 0:5
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U 1 ¼ UðX ; Y ; tÞ þ X3W1ðX ; Y ; tÞ � c1X 3
3 W1ðX ; Y ; tÞ
�

þ oU 3

oX1

�
; ð4aÞ

U 2 ¼ V ðX ; Y ; tÞ þ X3W2ðX ; Y ; tÞ � c1X 3
3 W2ðX ; Y ; tÞ
�

þ oU 3

oX2

�
; ð4bÞ

U 3 ¼ W ðX ; Y ; tÞ þ W
�ðX ; Y Þ; ð4cÞ
where c1 ¼ 4=3h2, ðU ; V ;W Þ are the displacements of a point on the mid-plane, andW1 andW2 are the slope

rotations in the X1–X3 and X2–X3 planes due to bending only.

As the in-plane displacements U 1 and U 2 are small compared to the transverse displacement U 3 and the
higher-order terms are negligible, the nonlinear strains of an imperfect plate are defined as
e1 ¼ eð0Þ1 þ X3 eð1Þ1

h
þ X 2

3 e
ð3Þ
1

i
; e2 ¼ eð0Þ2 þ X3 eð1Þ2

h
þ X 2

3 e
ð3Þ
2

i
;

e6 ¼ eð0Þ6 þ X3 eð1Þ6

h
þ X 2

3 e
ð3Þ
6

i
; e4 ¼ eð0Þ4 þ X 2

3 e
ð2Þ
4 ; e5 ¼ eð0Þ5 þ X 2

3 e
ð2Þ
5 ;

ð5Þ
where
eð0Þ1 ¼ oU
oX1

þ 1

2

oW
oX1

� �2

þ oW
oX1

oW
�

oX1

; eð1Þ1 ¼ oW1

oX1

; eð3Þ1 ¼ �c1
oW1

oX1

�
þ o2W

oX 2
1

þ o2W
�

oX 2
1

�
;

eð0Þ2 ¼ oU
oX2

þ 1

2

oW
oX2

� �2

þ oW
oX2

oW
�

oX2

; eð1Þ2 ¼ oW2

oX2

; eð3Þ2 ¼ �c1
oW2

oX2

�
þ o2W

oX 2
2

þ o2W
�

oX 2
2

�
;

eð0Þ6 ¼ oU
oX2

þ oV
oX1

þ oW
oX1

oW
oX2

þ oW
�

oX1

oW
oX2

þ oW
oX1

oW
�

oX2

;

eð1Þ6 ¼ oW1

oX2

þ oW2

oX1

; eð3Þ6 ¼ �c1
oW1

oX2

�
þ oW2

oX1

þ 2
o2W

oX1 oX2

þ 2
o2W

�

oX1 oX2

�
;

eð0Þ4 ¼ W2 þ
oW
oX2

þ oW
�

oX2

; eð2Þ4 ¼ �3c1 W2

�
þ oW
oX2

þ oW
�

oX2

�
;

eð0Þ5 ¼ W1 þ
oW
oX1

þ oW
�

oX1

; eð2Þ5 ¼ �3c1 W1

�
þ oW
oX1

þ oW
�

oX1

�
:

ð6Þ
Let F be the stress function that is related to the stress resultants by N 1 ¼ F ;X2X2
, N 2 ¼ F ;X1X1

,

N 6 ¼ �F ;X1X2
, where a comma denotes partial differentiation with respect to the coordinates. The nonlinear

governing equations can be derived as follows:
oQ1

oX1

þ oQ2

oX2

� 3c1
oR1

oX1

�
þ oR2

oX2

�
þ c1

o2P 1

oX 2
1

�
þ 2

o2P 6

oX1 oX2

þ o2P 2

oX 2
2

�
þ eLðW þ W

�
; F Þ

¼ I1 €W þ I 07
o2 €W
oX 2

1

 
þ o2 €W

oX 2
2

!
þ I 05

o €W1

oX1

 
þ o €W2

oX2

!
; ð7Þ

oM1

oX1

þ oM6

oX2

� Q1 þ 3c1R1 � c1
oP 1

oX1

�
þ oP 6

oX2

�
¼ I 03

€W1 � I 05
o €W
oX1

; ð8Þ

oM6

oX1

þ oM2

oX2

� Q2 þ 3c1R2 � c1
oP 6

oX1

�
þ oP 2

oX2

�
¼ I 03

€W2 � I 05
o €W
oX2

; ð9Þ
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o2eð0Þ1

oX 2
2

þ o2eð0Þ2

oX 2
1

� o2eð0Þ6

oX1 oX2

¼ o2W
oX1 oX2

� �2

� o2W
oX 2

1

o2W
oX 2

2

þ 2
o2W

oX1 oX2

o2W
�

oX1 oX2

� o2W
oX 2

1

o2W
�

oX 2
2

� o2W
oX 2

2

o2W
�

oX 2
1

;

ð10Þ
where eLð; Þ ¼ o2

oX 2
1

o2

oX 2
2

� 2 o2

oX1 oX2

o2

oX1 oX2
þ o2

oX 2
2

o2

oX 2
1

, a super dot implies differentiation with respect to time t,
and
I 03 ¼ I3 � I
2

2=I1; I 05 ¼ c1ðI5 � I4I2=I1Þ; I 07 ¼ c21ðI24=I1 � I7Þ;

I2 ¼ I2 � c1I4; I3 ¼ I3 � 2c1I5 þ c21I7; I5 ¼ I5 � c1I7;

ðI1; I2; I3; I4; I5; I7Þ ¼
XNL

k¼1

Z X ðkÞ
3

X ðk�1Þ
3

qðkÞ 1;X3;X 2
3 ;X

3
3 ;X

4
3 ;X

6
3

� �
dX3:

ð11Þ
Stress resultants Ni, moments Mi, higher-order moments P i, transverse shear forces Qi and their higher-

order counterparts Ri are related to strains through a partial inverse relationship
eð0Þi

Mi

P i

8><>:
9>=>; ¼

A�
ij B�

ij E�
ij

�B�
ji D�

ij F �
ji

�E�
ji F �

ij H �
ij

264
375 Nj

eð1Þj

eð3Þj

8><>:
9>=>; ði; j ¼ 1; 2; 6Þ; ð12aÞ
Qi

Ri

� �
¼ Aij Dij

Dij Fij

	 

eð0Þj

eð2Þj

( )
ði; j ¼ 4; 5Þ: ð12bÞ
The relations to determine the above reduced plate stiffness elements are available in open literature (see,

for example, Shen, 2002a,b,c, 2003) and therefore are omitted for brevity.

A fully movable laminated plate that is either simply supported (S) or clamped (C) at both edges X2 ¼ 0,

1, and can be supported (S), clamped (C), or free (F) at the other edges is considered. The associated
boundary conditions take the form

at X1 ¼ 0, a:
Simply supported ðSÞ : W ¼ M1 ¼ W2 ¼ P 1 ¼ N 1 ¼ N 6 ¼ 0; ð13aÞ
Clamped ðCÞ : W ¼ W1 ¼ W2 ¼
oW
oX1

¼ N 1 ¼ N 6 ¼ 0; ð13bÞ
Free ðFÞ : Q
�
1 ¼ M1 ¼ M

�
6 ¼ P 1 ¼ N 1 ¼ N 6 ¼ 0; ð13cÞ
at X2 ¼ 0, b:
Simply supported ðSÞ : W ¼ M2 ¼ W1 ¼ P 2 ¼ N 2 ¼ N 6 ¼ 0; ð14aÞ
Clamped ðCÞ : W ¼ M2 ¼ W1 ¼
oW
oX2

¼ N 2 ¼ N 6 ¼ 0; ð14bÞ
where Q
�
1 and M

�
6 are the generalized transverse shear force and moment at X1 ¼ 0, 1. Their definitions

are given by Reddy (1984).
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2.3. Dimensionless governing equations

With the following dimensionless quantities,
x1 ¼ X1=a; x2 ¼ X2=b; b ¼ a=b; ðW ;W �Þ ¼ ðW ;W
�Þ=ðD�

11D
�
22A

�
11A

�
22Þ

1=4
;

F ¼ F =ðD�
11D

�
22Þ

1=2
; ðW1;W2Þ ¼ ðW1;W2Þa=ðD�

11D
�
22A

�
11A

�
22Þ

1=4
;

ðI�3 ; I�5 ; I�7 Þ ¼ ðI 03; I 05; I 07Þ=I1a2; bI �5 ¼ I�3 þ I�5 ; bI �7 ¼ I�7 � I�5 ;

ð15Þ
the mid-plane of the plate is normalized into a square domain ½06 x1 6 1; 06 x2 6 1�, and the governing

Eqs. (7)–(10) can be expressed in terms of W , W1, W2, and F as
c110
o4W
ox41

þ 2c112b
2 o4W
ox21 ox

4
2

þ c114b
4 o

4W
ox42

� c120
o3W1

ox31

�
þ c122b

2 o3W1

ox1 ox22

�
� b c131

o3W2

ox21 ox2

�
þ c133b

2 o
3W2

ox32

�
þ c14 c140

o4F
ox41

�
þ c142b

2 o4F
ox21 ox

2
2

þ c144b
4 o

4F
ox42

�

¼ c14b
2LðW þ W �; F Þ � €W

"
þ bI �7 o2 €W

ox21

 
þ b2 o

2 €W
ox22

!
þ bI �5 o €W1

ox1

 
þ o €W2

ox2

!#
; ð16Þ

c31
oW
ox1

þ c310
o3W
ox31

þ c312b
2 o3W
ox1 ox22

þ c31W1

�
� c320

o2W1

ox21
� c322b

2 o
2W1

ox22

�
� c331b

o2W2

ox1 ox2

þ c14 c220
o3F
ox31

�
þ c222b

2 o3F
ox1 ox22

�
¼ � I�3 €W1

 
� I�5

o €W
ox1

!
; ð17Þ

b c41
oW
ox2

�
þ c411

o3W
ox21 ox2

þ c413b
2 o

3W
ox32

�
� c331b

o2W1

ox1 ox2
þ c41W2

�
� c430

o2W2

ox21
� c432b

2 o
2W2

ox22

�

þ c14b c231
o3F

ox21 ox2

�
þ c233b

2 o
3F
ox32

�
¼ � I�3 €W2

 
� I�5

o €W
ox2

!
; ð18Þ

o4F
ox41

þ c212b
2 o4F
ox21 ox

2
2

þ c224b
4 o

4F
ox42

þ c24 c220
o3W1

ox3

�
þ c222b

2 o
3W1

oxox22

�
þ c24b c231

o3W2

ox21 ox2

�
þ c233b

2 o
3W2

ox32

�
� c24 c240

o4W
ox41

�
þ c242b

2 o4W
ox21 ox

2
2

þ c244b
4 o

4W
ox42

�
¼ � 1

2
c24b

2LðW þ 2W �;W Þ; ð19Þ
where Lð; Þ ¼ o2

ox2
1

o2

ox2
2

� 2 o2

ox1 ox2
o2

ox1 ox2
þ o2

ox2
1

o2

ox2
2

, and the coefficients cij and cijk are defined by Yang and Shen

(2003c).

The boundary conditions (13) and (14) now become

at x1 ¼ 0, 1:
Simply supported ðSÞ : W ¼ M1 ¼ W2 ¼ P1 ¼ N1 ¼ N6 ¼ 0; ð20aÞ

Clamped ðCÞ : W ¼ W1 ¼ W2 ¼
oW
ox1

¼ N1 ¼ N6 ¼ 0; ð20bÞ

Free ðFÞ : Q�
1 ¼ M1 ¼ M�

6 ¼ P1 ¼ N1 ¼ N6 ¼ 0; ð20cÞ
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at x2 ¼ 0, 1:
Simply supported ðSÞ : W ¼ M2 ¼ W1 ¼ P2 ¼ N2 ¼ N6 ¼ 0; ð21aÞ

Clamped ðCÞ : W ¼ M2 ¼ W1 ¼
oW
ox2

¼ N2 ¼ N6 ¼ 0 ð21bÞ
in which
ðM1;M2; P1; P2;M�
6 ;Q

�
1Þ ¼ ðM1;M2; c1P 1; c1P 2;M

�
6;Q

�
1aÞa2=D�

11ðD�
11D

�
22A

�
11A

�
22Þ

1=4
: ð22Þ
3. Semi-analytical method

A semi-analytical approach that was proposed by Yang and Shen (2002, 2003a,c), together with an

iterative algorithm, is used to study the nonlinear vibration of the imperfect laminated plate. The approach
employs the one-dimensional differential quadrature rule and the Galerkin technique to establish a non-

linear eigenvalue system from which the nonlinear fundamental frequencies at given vibration amplitudes

are determined through an iteration process.

Bellman (1973) proposed the differential quadrature method to solve linear and nonlinear differential

equations, and it was later introduced to structural analysis by Jang et al. (1989), Bert and Malik (1996),

Bert et al. (1993, 1998) and Liew et al. (2001). Its basic idea is to approximate an unknown function and its

partial derivatives with respect to a spatial variable at any discrete point as the linear weighted sums of their

values at all the discrete points chosen in the solution domain. To start with, we discretise the plate domain
by N nodal lines parallel to x2-axis, and designate the values of W , W1, W2, and F at an arbitrary nodal line

x1 ¼ x1i (i ¼ 1; . . . ;N ) as
Wi ¼ W ðx1i; x2Þ; W1i ¼ W1ðx1i; x2Þ; W2i ¼ W2ðx1i; x2Þ; Fi ¼ F ðx1i; x2Þ: ð23Þ

According to the differential quadrature rule, the unknown functions W , W1, W2, F , and their kth partial

derivatives with respect to x1 are expressed as
fW ;W1;W2; F g ¼
XN
j¼1

ljðx1ÞfWj;W1j;W2j; Fjg; ð24Þ

ok

oxk1
fW ;W1;W2; F gjx1¼x1i

¼
XN
j¼1

CðkÞ
ij fWj;W1j;W2j; Fjg; ð25Þ
where liðx1Þ is the Lagrange interpolation polynomial
liðx1Þ ¼

QN
j¼1

ðx1 � x1jÞ

ðx1 � x1iÞ
QN

j¼1;j 6¼i
ðx1i � x1jÞ

; ð26Þ
and the weighting coefficients CðkÞ
ij can be obtained using the following recurrence formulas:
Cð1Þ
ij ¼

QN
k¼1;i6¼k

ðx1i � x1kÞ

ðx1i � x1jÞ
QN

k¼1;j 6¼k
ðx1j � x1kÞ

ði; j ¼ 1; 2; . . . ;N ; i 6¼ jÞ; ð27aÞ
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CðkÞ
ij ¼ k Cðk�1Þ

ii Cð1Þ
ij

 
�

Cðk�1Þ
ij

ðx1i � x1jÞ

!
ði; j ¼ 1; 2; . . . ;N ; i 6¼ j; kP 2Þ; ð27bÞ

CðkÞ
ii ¼ �

XN
j¼1;i 6¼j

CðkÞ
ij ði ¼ 1; 2; . . . ;N ; kP 1Þ: ð27cÞ
We further expand each of the unknown nodal functions Wi , W1i, W2i, and Fi as a linear sum as
ðWi ;W1i;W2i; FiÞ ¼
XM
m¼1

½aimWim; bimW1im; cimW2im; dimFim� expðixtÞ; ð28Þ
where x ¼ Xa2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
I1=D�

11

p
is the dimensionless frequency parameter, X is the natural frequency, M is the

truncated number of series, aim, bim, cim, dim are the unknown coefficients, and Wim,W1im,W2im, and Fim are the

analytical functions that satisfy all of the boundary conditions (21a) or (21b), and take the following forms.

(1) For plates simply supported at both x2 ¼ 0, 1:
Wi

W1

W2

Fim

Wi

W1

W2

Fim
m ¼ sinðmpx2Þ; ð29aÞ

im ¼ sinðmpx2Þ; ð29bÞ

im ¼ cosðmpx2Þ; ð29cÞ

¼ sin amx2 � sinh amx2 � nmðcos amx2 � cosh amx2Þ; ð29dÞ
(2) For plates clamped at both x2 ¼ 0, 1:
m ¼ sin amx2 � sinh amx2 � nmðcos amx2 � cosh amx2Þ; ð30aÞ

im ¼ sinðmpx2Þ; ð30bÞ

im ¼ sinðmpx2Þ; ð30cÞ

¼ sin amx2 � sinh amx2 � nmðcos amx2 � cosh amx2Þ; ð30dÞ
where nm ¼ ðsin am � sinh amÞ=ðcos am � cosh amÞ; am ¼ ð2mþ 1Þp=2.

Applying the relationships (24), (25), and (28) to the partial differential governing Eqs. (16)–(19) and the

boundary conditions (20), and then employing Galerkin�s procedure to minimize the interior residual

by taking functions (29) or (30) as the weighting functions, gives a nonlinear eigensystem that consists of

4NM algebraic equations in matrix form of
G11 G12 G13 G14 þG�
14

G21 G22 G23 G24

G31 G32 G33 G34

G41 þG�
41 G42 G43 G44

26664
37775

0BBB@ þ

0 0 0 H14ðDÞ
0 0 0 0

0 0 0 0

H41ðDÞ 0 0 0

26664
37775�x2

T11 T12 T13 0

T21 T22 T23 0

T31 T32 T33 0

0 0 0 0

26664
37775
1CCCA

a

b

c

d

8>>><>>>:
9>>>=>>>;

¼

0

0

0

0

8>>><>>>:
9>>>=>>>; ð31Þ
in which the unknown vectors
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D ¼ ½aT; bT; cT; dT�T;
a ¼ ½a11; . . . ; a1M ; . . . ; aiM ; . . . ; aNM �T; b ¼ ½b11; . . . ; b1M ; . . . ; biM ; . . . ; bNM �T;
c ¼ ½c11; . . . ; c1M ; . . . ; ciM ; . . . ; cNM �T; d ¼ ½d11; . . . ; d1M ; . . . ; diM ; . . . ; dNM �T:

ð32Þ
Gij (i; j ¼ 1; 2; 3; 4) and Tij (i; j ¼ 1; 2; 3) are constant matrices, G�
14 and G�

41 are the matrices including the

effect of the initial geometric imperfection, and H14ðDÞ and H41ðDÞ are the nonlinear matrices dependent on

the unknown vector D.
After static condensation of Eq. (31), an iteration process is used to determine the nonlinear frequency

with the following steps.

Step 1: Setting D ¼ 0, a linear eigenvalue (fundamental frequency) and the associated eigenvector (vibra-

tion mode) are sought from Eq. (31). The eigenvector is then appropriately scaled up such that the

maximum displacement is equal to a given vibration amplitude.

Step 2: Using the new eigenvector to calculate H14ðDÞ and H41ðDÞ, a new eigenvalue and eigenvector are

obtained from the updated eigensystem (31).

Step 3: The eigenvector is scaled up again and step 2 is repeated until the eigenvalue converges to a desired

accuracy.

Obviously, linear vibration frequency can be solved from Eq. (31) as a limiting case by neglecting the

nonlinear matrices.
4. Numerical results and discussion

4.1. Comparison results

Before proceeding to linear and nonlinear vibration analyses of imperfect FGM laminated plates, the

nonlinear vibration of both simply supported isotropic and symmetric cross-ply laminated square plates

with sine type initial geometric imperfection is solved as test examples to validate the present formulation

and solution method.

For the isotropic plates (m ¼ 0:3, g ¼ 0:2, a=h ¼ 10; 20; 40), present results with varying numbers of
truncated series M and of the nodal lines N are compared in Table 2 with the analytical solutions of Singh

et al. (1974) and Lin and Chen (1989). Close correlation is achieved. Some discrepancy is expected because

their analyses were based on the FSDT and the in-plane displacement modes that they assumed were

slightly different from the movable conditions that are considered in the present investigation.

Since the stiffness matrices of a symmetric cross-ply plate can be regarded as a limiting case of those of

the laminated FGM plates and do not contain stretching-bending coupling elements, we further compare in

Table 3 normalized frequencies xNL=xL of both 90�/0�/90� and 0�/90�/0�/90�/0� symmetric cross-ply

graphite/epoxy plates (a=h ¼ 10, g ¼ 0:1) with Bhimaraddi�s parabolic shear deformation theory based
results (Bhimaraddi, 1993) to validate the present analysis in composite laminates, where xL and xNL

denote linear and nonlinear fundamental frequency of the imperfect plate, respectively. Excellent agreement

is observed. The material constants used in this example are:
E11 ¼ 181 GPa; E22 ¼ 10:3 GPa; G12 ¼ G13 ¼ 7:17 GPa; G23 ¼ 6:21 GPa; m12 ¼ 0:28:
In what follows, a symbolic notation will be used to indicate the out-of-plane boundary conditions.

‘‘SCSF’’, for example, refers to a laminated plate simply supported at x2 ¼ 0, 1, clamped at x1 ¼ 0, and free
at x1 ¼ 1.



Table 2

Comparisons of nonlinear periods for simply supported imperfect isotropic square plates

a=h Wc=h Singh et al.

(1974)

Lin and Chen

(1989)

ðN ;MÞ
ð9; 3Þ ð13; 5Þ ð17; 5Þ ð23; 7Þ

10 0.0 10.269 10.0353 8.1746 10.092 10.298 10.307

0.1 10.24 9.98 8.1510 10.063 10.112 10.123

0.2 10.15 9.87 8.1030 10.004 10.019 10.042

0.4 9.67 9.23 7.6411 9.4001 9.4571 9.4602

0.6 8.81 8.10 6.6197 8.1712 8.3370 8.3547

0.8 7.85 6.97 5.5467 6.8478 6.9876 6.9916

1.0 6.99 5.99 4.6636 5.7575 5.8750 5.8769

20 0.0 20.044 21.2688 18.285 21.017 21.446 21.468

0.1 19.99 19.47 16.745 19.243 19.636 19.656

0.2 19.81 19.30 16.583 19.060 19.443 19.469

0.4 18.90 18.70 16.086 18.488 18.862 18.881

0.6 17.27 15.89 13.647 15.684 16.001 16.023

0.8 15.55 13.78 11.911 13.695 13.971 13.985

1.0 13.77 12.02 10.429 11.987 12.232 12.244

40 0.0 39.840 42.2041 34.419 40.159 41.404 41.526

0.1 39.74 38.73 32.309 37.700 38.866 38.983

0.2 39.39 38.38 31.959 37.282 38.435 38.551

0.4 37.59 35.94 29.931 34.925 36.006 36.114

0.6 34.37 31.63 26.363 30.762 31.717 31.809

0.8 30.75 27.44 22.970 26.803 27.632 27.715

1.0 27.45 23.97 19.987 23.317 24.038 24.106

Table 3

Comparisons of normalized frequencies for simply supported imperfect symmetric cross-ply square plates

Wc=h 0�/90�/0� 0�/90�/0�/90�/0�

Present Bhimaraddi (1993) Present Bhimaraddi (1993)

0.0 1.000 1.000 1.000 1.000

0.2 1.034 1.030 1.036 1.030

0.4 1.142 1.130 1.134 1.125

0.6 1.301 1.289 1.291 1.278

0.8 1.496 1.482 1.476 1.465

1.0 1.708 1.694 1.683 1.671

1.2 1.933 1.917 1.897 1.888
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4.2. Linear vibration

In the following sections, it is assumed that the homogeneous substrate is made of stainless steel

(SUS304) and the FGM layers are a mixture of silicon nitride and stainless steel, with temperature-

dependent material constants
E ¼ 348:43� ð1� 3:070� 10�4 � T þ 2:160� 10�7 � T 2 � 8:946� 10�11 � T 3Þ GPa;

m ¼ 0:24; a ¼ 5:8723� 10�6 � ð1þ 9:095� 10�4 � T Þ K�1; q ¼ 2370 kg=m3
for silicon nitride and



Table

Linear

a=h

5

10

40
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E ¼ 201:04� ð1þ 3:079� 10�4 � T � 6:534� 10�7 � T 2Þ GPa;

m ¼ 0:3262� ð1� 2:002� 10�4 � T þ 3:797� 10�7 � T 2Þ;
a ¼ 12:33� 10�6 � ð1þ 8:086� 10�4 � T Þ K�1; q ¼ 8166 kg=m3
for stainless steel. The thickness ratio between the homogeneous substrate and the FGM layer is hc=hF ¼ 3

and the side-to-thickness ratio is a=h ¼ 5 except in Table 4 and Fig. 10. The values of I1 and D�
11 of an

isotropic steel plate with a=h ¼ 10 at T ¼ 300 K are selected to serve as the reference inertia I0 and the

reference stiffness D0.

Tables 4–6 present the first 6 dimensionless linear frequencies x ¼ ðXa2=p2Þ
ffiffiffiffiffiffiffiffiffiffiffiffi
I0=D0

p
for imperfect

(g ¼ 0:2) laminated square plates with three types of initial imperfections, together with those for perfect

(g ¼ 0:0) plates to demonstrate the effect of imperfection. The temperature is assumed to be T ¼ 300 K.
Table 4 compares the linear results of simply supported, moderately thick (a=h ¼ 40, 10) and thick

(a=h ¼ 5), FGM laminated (n ¼ 0:2, 2.0, 10), and fully stainless steel plates with sine type imperfection. The

linear frequency is the maximum for laminated plates of n ¼ 0:2 and becomes smaller as n increases. This

can be expected because the Young�s modulus for silicon nitride is much greater than that for stainless steel,

and the volume of silicon nitride declines when n increases. The linear frequency also decreases dramatically

with increases in the side-to-thickness ratio a=h. The effect of the initial imperfections is to increase the

vibration frequency. This effect, however, tends to be very weak as a=h increases to 40, which indicates that

the geometric imperfection has much stronger influence on the vibration behavior of thicker plates.
Table 5 examines the effect of the location of local type imperfection on the linear frequencies of FGM

laminated plates with different boundary supporting conditions (CCCC, SCSC, SSSS, CFCF, and SFSF).

Given the same parameters, the plate with an imperfection locally centered at x1 ¼ 0:5 (Case L2) has higher

frequencies than the one whose imperfection is deviated from the plate center and located at x1 ¼ 0:25 (Case
L1). The fully clamped laminated plate has the highest linear frequencies among the plates considered.
4

frequency parameters for simply supported laminated square plates with sine type imperfection

Mode No. Perfect Imperfect

n ¼ 0:2 n ¼ 2:0 n ¼ 10 SUS304 n ¼ 0:2 n ¼ 2:0 n ¼ 10 SUS304

1 6.4388 5.6094 5.1983 4.9959 6.4636 5.6313 5.2192 5.0165

2 13.902 12.183 11.338 10.922 13.917 12.196 11.350 10.934

3 13.902 12.183 11.338 10.922 13.917 12.196 11.350 10.934

4 19.937 17.546 16.374 15.796 19.948 17.555 16.383 15.805

5 23.460 20.692 19.338 18.669 23.470 20.700 19.345 18.675

6 23.460 20.692 19.338 18.669 23.470 20.700 19.345 18.675

1 2.5120 2.1792 2.0131 1.9310 2.5201 2.1865 2.0200 1.9379

2 5.9606 5.1826 4.7958 4.6052 5.9649 5.1865 4.7995 4.6088

3 5.9606 5.1827 4.7958 4.6052 5.9649 5.1865 4.7995 4.6088

4 9.1059 7.9328 7.3515 7.0652 9.1087 7.9353 7.3539 7.0676

5 11.066 9.6515 8.9519 8.6076 11.068 9.6535 8.9538 8.6094

6 11.066 9.6515 8.9519 8.6076 11.068 9.6535 8.9538 8.6094

1 0.3256 0.2821 0.2602 0.2494 0.3266 0.2830 0.2611 0.2502

2 0.8110 0.7026 0.6482 0.6214 0.8116 0.7031 0.6487 0.6219

3 0.8110 0.7026 0.6482 0.6214 0.8116 0.7031 0.6487 0.6219

4 1.2927 1.1201 1.0337 0.9909 1.2931 1.1204 1.0339 0.9912

5 1.6120 1.3969 1.2892 1.2359 1.6122 1.3971 1.2894 1.2361

6 1.6120 1.3969 1.2892 1.2359 1.6122 1.3971 1.2894 1.2361



Table 5

Linear frequency parameters for laminated square plates with localized imperfection

Plate

type

Mode

No.

Perfect Case L1 Case L2

n ¼ 0:2 n ¼ 2:0 n ¼ 10 n ¼ 0:2 n ¼ 2:0 n ¼ 10 n ¼ 0:2 n ¼ 2:0 n ¼ 10

CCCC 1 9.7131 8.5588 7.9958 9.7564 8.5971 8.0320 10.092 8.8980 8.3190

2 16.866 14.930 13.996 16.974 15.025 14.085 16.875 14.938 14.003

3 17.134 15.153 14.196 17.252 15.257 14.293 17.687 15.644 14.660

4 22.916 20.307 19.047 23.200 20.555 19.280 22.961 20.346 19.083

5 25.955 23.042 21.639 26.034 23.116 21.711 26.233 23.271 21.844

6 26.759 23.683 22.172 26.940 23.834 22.306 27.591 24.410 22.854

SCSC 1 8.1526 7.1646 6.6825 8.1828 7.1911 6.7074 8.4531 7.4331 6.9382

2 14.505 12.744 11.882 14.603 12.829 11.962 14.968 13.154 12.270

3 16.171 14.302 13.401 16.246 14.368 13.462 16.176 14.306 13.405

4 21.209 18.743 17.546 21.425 18.931 17.723 21.239 18.769 17.571

5 23.708 20.925 19.565 23.881 21.076 19.706 24.362 21.502 20.109

6 25.586 22.713 21.331 25.629 22.751 21.367 25.916 22.993 21.593

SSSS 1 6.4388 5.6094 5.1983 6.4914 5.6560 5.2428 6.7815 5.9143 5.4889

2 13.902 12.183 11.338 13.984 12.255 11.406 13.907 12.188 11.342

3 13.902 12.183 11.338 14.020 12.287 11.436 14.362 12.588 11.721

4 19.937 17.546 16.374 20.158 17.739 16.556 19.965 17.570 16.397

5 23.460 20.692 19.338 23.502 20.729 19.372 23.578 20.794 19.433

6 23.460 20.692 19.338 23.663 20.869 19.503 24.253 21.384 19.986

CFCF 1 6.4849 5.6942 5.3055 6.5514 5.7531 5.3613 6.6632 5.8509 5.4531

2 7.4929 6.5464 6.0836 7.5672 6.6122 6.1461 7.4978 6.5507 6.0877

3 11.8946 10.349 9.5899 11.901 10.355 9.5958 12.216 10.632 9.8569

4 14.8668 13.129 12.287 14.988 13.234 12.386 15.087 13.319 12.464

5 16.2188 14.273 13.329 16.369 14.402 13.450 16.233 14.285 13.341

6 20.132 17.550 16.281 20.198 17.608 16.335 20.139 17.555 16.287

SFSF 1 3.3602 2.9055 2.6787 3.4372 2.9741 2.7441 3.5759 3.0962 2.8596

2 5.3156 4.5702 4.2029 5.3789 4.6265 4.2567 5.3184 4.5727 4.2053

3 10.957 9.4870 8.7603 10.961 9.4907 8.7639 11.209 9.7085 8.9703

4 11.499 10.032 9.3075 11.610 10.129 9.3977 11.696 10.202 9.4652

5 13.308 11.580 10.728 13.431 11.686 10.827 13.319 11.588 10.736

6 18.355 16.011 14.854 18.372 16.026 14.869 18.782 16.384 15.205
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Table 6 investigates the effect of the global imperfection mode on the linear vibration of SSSS and CCCC
FGM laminated plates. The half-wave number is taken to be the same along x1- and x2-axes, and is 3, 5, and

7 for Cases G1, G2, and G3, respectively. The linear frequency increases as the half-wave number increases.

This effect is much more pronounced for SSSS laminated plates where a maximum of 31.2–32.5% gain in

fundamental frequencies can be obtained with Case G3 imperfections.

The sensitivity of linear fundamental frequency to geometric imperfection is studied in Fig. 3 by com-

paring the sensitivity indicator Sx of simply supported, FGM laminated square plates with sine type, Case

G1, or Case L2 imperfections. Here, Sx is calculated by
Sx ¼ ðximperfect � xperfectÞ
xperfect

� 100%; ð33Þ
where xperfect and ximperfect denote the dimensionless fundamental frequencies for perfect plates and

imperfect plates, respectively. Among the imperfection modes under consideration, the linear frequency is



Table 6

Linear frequency parameters for laminated square plates with global imperfection

Imperfection Mode No. SSSS CCCC

n ¼ 0:2 n ¼ 2:0 n ¼ 10 n ¼ 0:2 n ¼ 2:0 n ¼ 10

Perfect 1 6.4388 5.6094 5.1983 9.7131 8.5588 7.9958

2 13.902 12.183 11.338 16.866 14.930 13.996

3 13.902 12.183 11.338 17.134 15.153 14.196

4 19.937 17.546 16.374 22.916 20.307 19.047

5 23.460 20.692 19.338 25.955 23.042 21.639

6 23.460 20.692 19.338 26.759 23.683 22.172

Case G1 1 6.5166 5.6785 5.2641 9.7606 8.6024 8.0381

2 14.034 12.299 11.448 16.939 14.993 14.055

3 14.067 12.328 11.475 17.202 15.212 14.250

4 20.157 17.738 16.554 23.010 20.387 19.122

5 23.987 21.150 19.766 26.605 23.604 22.162

6 23.987 21.150 19.766 27.506 24.331 22.776

Case G2 1 6.5871 5.7414 5.3241 9.8215 8.6561 8.0887

2 13.947 12.222 11.375 16.919 14.976 14.039

3 13.983 12.255 11.406 17.339 15.334 14.367

4 19.936 17.545 16.373 22.963 20.346 19.083

5 23.654 20.861 19.496 26.913 23.818 22.296

6 24.519 21.614 20.201 27.184 24.088 22.605

Case G3 1 8.4370 7.3813 6.8790 11.143 9.8274 9.2005

2 14.760 12.939 12.052 17.998 15.939 14.957

3 15.437 13.535 12.614 19.233 17.003 15.943

4 20.796 18.300 17.083 24.548 21.752 20.416

5 24.548 21.635 20.214 27.414 24.317 22.837

6 25.262 22.265 20.812 29.328 25.920 24.261
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most sensitive to localized imperfection, but is comparatively less sensitive to sine type imperfection. The

results also confirm that the linear frequency increases steadily as the imperfection amplitude increases.
4.3. Nonlinear vibration

In this section, only nonlinear results for the fundamental vibration mode are presented, even though the

analysis is also applicable to the non-fundamental modes. Unless otherwise specified, numerical results in

the form of normalized frequency xNL=x0, given in Table 7 and Figs. 4–10 are for simply supported, FGM

laminated square plates (n ¼ 0:2, 10) at T ¼ 300 K, where xNL is the nonlinear fundamental frequency of

an imperfect plate and x0 is the linear fundamental frequency of its perfect counterpart, which is deter-

mined from the linear form of Eq. (31) by neglecting imperfection matrices G�
14, G

�
41, and the nonlinear

matrices H14ðDÞ and H41ðDÞ.
The normalized frequencies of CCCC, SCSC, and SSSS imperfect laminated plates ðg ¼ 0:2Þ at various

vibration amplitudes (W c=h ¼ 0:0, 0.2, 0.4, 0.6, 0.8, 1.0) and with three types of initial imperfections (sine

type, Case L2, and Case G1) are tabulated in Table 7. Note that the results at W c=h ¼ 0:0 are virtually the

frequency ratios between the linear fundamental frequency and x0. The normalized frequency rises with the

increase of vibration amplitude, thus displaying the typical characteristic of the well-known ‘‘hard-spring’’

vibration behavior. The plate with Case L2 imperfection has the highest values of normalized frequency

xNL=x0, but unlike the linear case discussed in Fig. 3, the values of xNL=x0 for the plate with sine type
imperfections are greater than those with Case G1 imperfections.
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Fig. 3. Geometric imperfection sensitivity of linear fundamental frequency for simply supported laminated square plates.

Table 7

Normalized frequencies of laminated square plates with initial imperfection

Imperfec-

tion type

W c=h CCCC SSSS SCSC

n ¼ 0:2 n ¼ 2 n ¼ 10 n ¼ 0:2 n ¼ 2 n ¼ 10 n ¼ 0:2 n ¼ 2 n ¼ 10

Sine type 0.0 1.0029 1.0029 1.0030 1.0039 1.0040 1.0040 1.0030 1.0030 1.0031

0.2 1.0224 1.0226 1.0231 1.0251 1.0256 1.0263 1.0216 1.0218 1.0222

0.4 1.0577 1.0581 1.0593 1.0631 1.0644 1.0662 1.0551 1.0557 1.0569

0.6 1.1048 1.1057 1.1076 1.1153 1.1175 1.1206 1.1003 1.1014 1.1036

0.8 1.1607 1.1621 1.1650 1.1784 1.1818 1.1866 1.1539 1.1557 1.1592

1.0 1.2238 1.2257 1.2296 1.2495 1.2542 1.2607 1.2140 1.2167 1.2213

Case L2 0.0 1.0956 1.0959 1.0977 1.1060 1.1084 1.1114 1.0940 1.0944 1.0962

0.2 1.1430 1.1439 1.1464 1.1584 1.1618 1.1661 1.1411 1.1421 1.1450

0.4 1.1953 1.1967 1.2001 1.2193 1.2238 1.2295 1.1928 1.1946 1.1986

0.6 1.2531 1.2551 1.2592 1.2877 1.2933 1.3005 1.2488 1.2514 1.2564

0.8 1.3177 1.3201 1.3251 1.3625 1.3691 1.3779 1.3097 1.3130 1.3191

1.0 1.3906 1.3931 1.3989 1.4426 1.4503 1.4605 1.3760 1.3799 1.3870

Case G1 0.0 1.0089 1.0090 1.0093 1.0103 1.0105 1.0108 1.0117 1.0117 1.0119

0.2 1.0218 1.0222 1.0230 1.0179 1.0183 1.0188 1.0221 1.0221 1.0226

0.4 1.0462 1.0472 1.0487 1.0422 1.0431 1.0443 1.0437 1.0441 1.0451

0.6 1.0809 1.0826 1.0848 1.0816 1.0833 1.0856 1.0750 1.0762 1.0780

0.8 1.1257 1.1278 1.1309 1.1339 1.1366 1.1403 1.1155 1.1176 1.1205

1.0 1.1812 1.1836 1.1875 1.1972 1.2011 1.2065 1.1653 1.1681 1.1723
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Fig. 4. Normalized frequencies versus vibration amplitude curves for simply supported laminated square plates with global imper-

fection.
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Fig. 5. Normalized frequencies versus vibration amplitude curves for simply supported laminated square plates with localized

imperfection.
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Fig. 6. Normalized frequencies versus vibration amplitude curves for simply supported laminated square plates at different temper-

atures.
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Fig. 7. Effect of imperfection location on the nonlinear vibration behavior of simply supported laminated square plates.
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Fig. 8. Normalized frequencies versus vibration amplitude curves for SFSF and CFCF laminated square plates with localized

imperfections (Case L2).
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Fig. 9. Normalized frequencies versus vibration amplitude curves for simply supported laminated square plates with different material

compositions.
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Fig. 10. Effect of side-to-thickness ratio on the nonlinear vibration behavior of simply supported laminated square plates with different

initial imperfections.
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Figs. 4 and 5 show the normalized frequency versus vibration amplitude curves for perfect and imperfect

FGM laminated plates with global and localized imperfections. Curves a, which are for perfect plates, are

exactly symmetric with W c=h ¼ 0:0. For an imperfect plate, however, the minima, rising as the half-wave

number increases, deviate from W c=h ¼ 0:0, and the symmetry of the curves does not exist. Such a tendency
is much more obvious in Fig. 5 for plates with localized imperfections.

Fig. 6 compare the normalized frequency versus vibration amplitude curves for FGM laminated plates at

different temperatures (T ¼ 300, 600 K). The curves become lower as temperature rises.

We next investigate the effect of imperfection location on the nonlinear vibration of FGM laminated

plate. To this end, normalized frequency versus vibration amplitude curves with the center of Case L1 type

imperfection located at x1 ¼ 0:25, 0.40, 0.50 are given in Fig. 7. As can be observed, the minima of the

curves increase slightly and move further to the left-hand side as the imperfection location gets closer to the

plate center.
Fig. 8 depicts the nonlinear vibration behavior of FGM laminated plates with free edges. The

numerical results show that both CFCF and SFSF imperfect plates change to ‘‘soft-spring’’ vibration

behavior from their inherent ‘‘hard-spring’’ behavior as the magnitude of central localized imperfection

reaches a certain level (gP 0:095 for SFSF plates and gP 0:055 for CFCF plates). A similar phenomenon

is found in all of the other examples involving free edges. This suggests that the vibration behavior of

laminated plates containing free edges is very much dependent on the existence and amplitude of initial

imperfection.

Fig. 9 gives the normalized frequency versus vibration amplitude curves for plates with sine type
imperfection and having different material composition. Curves a, b, and c are for a fully FGM plate, a

symmetrically laminated FGM/FGM plate, and an FGM/Al/FGM plate, respectively. The material profile

of the first two plates can be characterized by ceramic volume fraction defined as
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FGM=FGM : Vc ¼ ð2X3=hÞn; X3 P 0; Vc ¼ ð�2X3=hÞn; X3 6 0; ð34aÞ

Fully FGM : Vc ¼ ð0:5þ X3=hÞn: ð34bÞ
The fully FGM plate has the highest xNL=x0 at negative vibration amplitudes, but has the lowest xNL=x0

at positive vibration amplitudes. In contrast, the normalized frequency of an FGM/Al/FGM laminated

plate is the minimum when W c=h < 0:0, but becomes the maximum when W c=h > 0:0.
Fig. 10 examines the variation of xNL=x0 with side-to-thickness ratio a=h for simply supported lami-

nated plates. For all plates, perfect and imperfect, xNL=x0 decreases with the increase of a=h, and tends

to be a constant when a=hP 20.
5. Conclusions

The nonlinear vibration problems of imperfect, shear deformable, and FGM laminated rectangular

plates are investigated in this paper by using Reddy�s higher-order shear deformation plate theory and a

semi-analytical approach. The influence of geometric imperfections, especially the localized type, is found

to be highly significant on the vibration behavior of such laminated plate structures. The presence of

localized imperfection at the plate center may significantly increase the linear frequencies and nonlinear

normalized frequencies. Laminated plates with free edges may change their inherent ‘‘hard-spring’’ non-

linear vibration behavior to a ‘‘soft-spring’’ character when the imperfection magnitude reaches a certain
level. The results also show that the vibration frequencies of thicker plates are much more sensitive to

geometric imperfections than those of thinner plates.
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